Subtile Merkmale, die in die spontane Bewegung von sehr Jungen Babys kann sich herausstellen, klinisch wichtige Aspekte Ihres die Entwicklung des Nervensystems. Visuelle Beurteilung durch einen klinischen Experten der general movements (GMs), die typischen Bewegungsmuster bekannt ist, wirksam bei der frühen Identifikation einer Zerebralparese (CP).
„Ein drei Monate Alter Säugling zeigt Häufig vorkommende stereotype, Tanz-ähnliche Bewegungen im ganzen Körper und Gliedmaßen. Ein bekannter Abwesenheit von Ihnen ist sehr aussagekräftige späteren Entstehung von CP“, sagt Sampsa Vanhatalo, professor für klinische Neurophysiologie, Universität Helsinki.
Eine sehr frühe Erkennung und die anschließende therapeutische intervention wäre sehr vorteilhaft für die Linderung der Auswirkungen bezüglich der neurologischen Entwicklung von CP. Derzeit, ein Kind mit CP in viel späteren Alter, in der Regel zwischen sechs Monaten und zwei Jahren. GM-Analyse hält Versprechen für die Früherkennung von CP, aber es erfordert spezielle expertise, die derzeit die durch internationale Lehrveranstaltungen, die effektiv begrenzt die Anzahl der ärzte oder Therapeuten mit den entsprechenden Fähigkeiten. Darüber hinaus GM-Analyse in seiner heutigen form basiert auf einer visuellen Einschätzung, die ist immer subjektiv.
„Es ist eine dringende Notwendigkeit für eine Objektive und automatisierte Verfahren. Sie erlauben die Beschäftigung von Bewegungsanalysen auf viel breiterer Ebene und zugänglich zu machen, um im wesentlichen die meisten, wenn nicht alle Kinder in der Welt“, sagt Vanhatalo.
Der Stock-Mann, verrät die essentials
Forscher an der Universität von Helsinki und der Universität von Pisa, erkunden Sie die Möglichkeit, einen herkömmlichen video-Aufnahme von einem Säugling im Bett zu liegen umgewandelt werden könnte, um eine quantifizierte Analyse der Säuglings-Bewegungen. Arbeiteten Sie mit Personal aus Neuro Event Labs, eine AI-Unternehmen mit Sitz in Tampere. Sie waren in der Lage, erstellen Sie eine Methode für eine genaue Extraktion von Kindern, die Bewegungen mit einer Technik bekannt als lageschätzung, so dass für die Konstruktion eines vereinfachten „stick man“ (oder das Skelett) video.
Als Nächstes wollen die Wissenschaftler Gaben Sie die videos, die ärzte mit GM-know-how, um festzustellen, ob diagnostisch entscheidende Informationen erhalten wurde, in diesen videos. Mit den Strichmännchen videos alleine, die ärzte waren in der Lage, weisen die diagnostischen Gruppen in 95 Prozent der Fälle, die belegen, dass die klinisch wesentlichen Informationen erhalten.
Die Studie zeigt, dass eine automatisierte algorithmen extrahieren kann klinisch wichtige Bewegungsmuster von normalen Videoaufnahmen. Diese stick figure-Extraktion direkt verwendet werden können, für quantitative Analysen. Um dies zu demonstrieren Potenzial, die Wissenschaftler ein proof-of-concept-Analyse, in denen einfache Maßnahmen der Strichmännchen Bewegungen zeigten deutliche Unterschiede zwischen den Gruppen der Säuglinge, die entweder mit normalen oder abnormen Bewegungen.
Einsatz von Strichmännchen-videos ermöglicht auch den Austausch zwischen Forschung weltweit ohne Bedenken hinsichtlich der Privatsphäre. Dies hat einen bedeutenden Engpass bei der Einrichtung multinationaler Forschungsaktivitäten in diesem Bereich.
„Dies endlich ermöglichen, eine echt Big Data Art von Entwicklung für eine bessere quantitative Bewegungsanalysen bei Säuglingen,“ Vanhatalo sagt.
„Da diese Studie, die wir gesammelt haben größere Datenmengen, einschließlich 3-D-video-Aufnahmen, und wir sind derzeit die Entwicklung eines KI-basierte Methode für die infantile motor maturity assessment. Die Begründung ist einfach: Es ist ein Entwicklungs-Problem mit dem Kind, wenn die rechnerische Bewertung von motor-Laufzeit stimmt nicht überein mit dem Kind wahr ist, Alter.“
Neben der frühen CP-Erkennung, automatisierte Bewegung-Analysen haben viele potenzielle Anwendungen in der Beurteilung des Säuglings neurologische Entwicklung. „Wir könnten eine Art von funktionellen Wachstum chart“, sagt Vanhatalo.
Bewegung-Analysen könnte auch verwendet werden, in vielfältiger Weise zur Verbesserung der therapeutischen Entscheidungen. Solche Methoden könnten quantitative Mittel zur objektiven Messung der Wirksamkeit von therapeutischen Strategien, eines der heiß diskutierten Themen in der modernen restaurativen Medizin. Automatisierte Bewegung könnten die Analysen erlauben auch die out-of-hospital-screening von Kindern, diejenigen zu erkennen, die Notwendigkeit, die weitere Pflege, bzw. zur Gewährleistung von Normalität in den Fällen, mit Besorgnis über die Entwicklung des Kindes.